Forecasting Chinese tourist volume with search engine data

نویسندگان

  • Xin Yang
  • Bing Pan
  • James A. Evans
  • Benfu Lv
چکیده

The queries entered into search engines register hundreds of millions of different searches by tourists, not only reflecting the trends of the searchers' preferences for travel products, but also offering a prediction of their future travel behavior. This study used web search query volume to predict visitor numbers for a popular tourist destination in China, and compared the predictive power of the search data of two different search engines, Google and Baidu. The study verified the co-integration relationship between search engine query data and visitor volumes to Hainan Province. Compared to the corresponding auto-regression moving average (ARMA) models, both types of search engine data helped to significantly decrease forecasting errors. However, Baidu data performed better due to its larger market share in China. The study demonstrated the value of search engine data, proposed a method for selecting predictive queries, and showed the locality of the data for forecasting tourism demand. © 2014 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Tourism Demand with Composite Search Index

Researchers have adopted online data such as search query volumes to forecast tourism demand for a destination, including tourist volumes and hotel occupancy. However, the massive yet highly correlated query data pose challenges when researchers attempt to include them in the forecasting model. We propose a framework and procedure for creating a composite search index adopted in a generalized d...

متن کامل

Predicting Hotel Demand Using Destination Marketing Organizations’ Web Traffic Data

(2014). Predicting hotel demand using destination marketing organizations' web traffic data. Introduction Forecasting future hotel guest arrivals and occupancy rates is a key aspect of hotel revenue management (Weatherford and Kimes 2003). Accurate forecasting is crucial to enable hoteliers to appropriately allocate hotel resources and fix pricing strategies (Weatherford and Kimes 2003). Tradit...

متن کامل

Seasonality in Tourism and Forecasting Foreign Tourist Arrivals in India

In the present age of globalization, technology-revolution and sustainable development, the presence of seasonality in tourist arrivals is considered as a key policy issue that affects the global tourism industry by creating instability in the demand and revenues. The seasonal component in a time-series distorts the prediction attempts for policy-making. In this context, it is quintessential to...

متن کامل

Forecasting Destination Weekly Hotel Occupancy with Big Data

Accurate forecasting of future performance of hotels is needed so hospitality constituencies in specific destinations can benchmark their properties and better optimize operations. As competition increases, hotel managers have urgent need for accurate short-term forecasts. In this study, time series models including several tourism big data sources, including search engine queries, website traf...

متن کامل

Towards Identifying and Reducing the Bias of Disease Information Extracted from Search Engine Data

The estimation of disease prevalence in online search engine data (e.g., Google Flu Trends (GFT)) has received a considerable amount of scholarly and public attention in recent years. While the utility of search engine data for disease surveillance has been demonstrated, the scientific community still seeks ways to identify and reduce biases that are embedded in search engine data. The primary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014